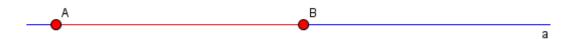
Начальные геометрические сведения

Прямая не имеет ни начала, ни конца.

Прямые обозначаются малыми латинскими буквами, а точки - большими латинскими буквами.

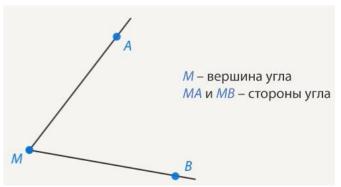
Через любые две точки можно провести прямую и притом только одну.


Две прямые либо имеют одну общую точку, либо не имеют общих точек вообще.

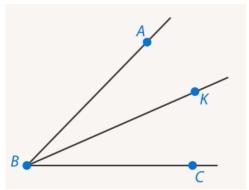
Тот факт, что точка A принадлежит прямой a , записывается следующим образом: $^A \in a$.

Точка F не принадлежит прямой a : $^F \not\in a$.

Отрезком AB называется геометрическая фигура, состоящая из точек A , B , и всех точек прямой, расположенных между точками A и B .

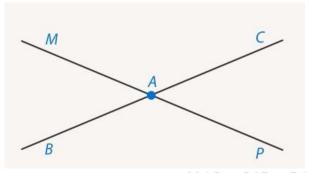

Более краткое: отрезок – это часть прямой, ограниченная точками $^{\mathbf{A}}$ и $^{\mathbf{B}}$

Лучом называется часть прямой, ограниченная с одной стороны точкой. Эта точка играет роль солнца – там «начинается» луч! То есть луч имеет начало, но не имеет конца, в отличие от отрезка, который ограничен с двух сторон.


Угол - геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Лучи называют сторонами угла, а их общее начало - вершина.

Обозначается угол обычно тремя буквами: одна на одной стороне угла, затем - вершина, затем - точка на другой стороне угла: $\angle AMB$ или $\angle BMA$, причем $\angle AMB = \angle BMA$.

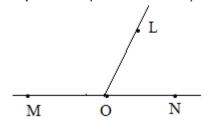
Задачи


Задача 1. Сколько углов на рисунке?

Решение: 3 угла: $^{\angle ABC}$, $^{\angle ABK}$, $^{\angle KBC}$. A как же углы $^{\angle CBA}$, $^{\angle KBA}$, $^{\angle CBK}$? Они совпадают уже с упомянутыми углами, то есть $^{\angle ABC}$ = $^{\angle CBA}$, $^{\angle ABK}$ = $^{\angle KBA}$, $^{\angle KBC}$ = $^{\angle CBK}$.

Ответ: ³ угла.

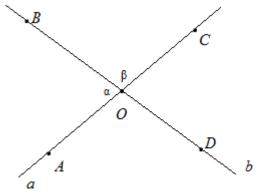
Задача 2. Две прямые CB и MP пересекаются в точке A . Сколько углов с вершинами в данных пяти точках можно назвать?


Сразу в глаза бросаются $^{\angle MAC}$, $^{\angle CAP}$, $^{\angle PAB}$ и $^{\angle BAM}$. Но, кроме этих углов, есть еще и развернутые углы: $^{\angle BAC}$ и $^{\angle MAP}$. Итого, 6 углов.

Ответ: ⁶ углов.

Понятие «смежные углы», сумма смежных углов

Определение: Если два угла имеют общую сторону, а две другие стороны являются дополняющими лучами, то данные углы называются **смежными**.


Теорема 1: Сумма смежных углов равна 180°.

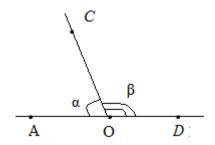
 \angle MOL + \angle LON = 180°. Данное утверждение является верным, так как луч OL делит развернутый угол \angle MON на два смежных угла. То есть мы не знаем градусных мер ни одного из смежных углов, а знаем лишь их сумму – 180°.

Вертикальные углы

Определение: Если стороны одного угла являются продолжением второго угла, то такие углы называются вертикальными. Именно поэтому на рисунке изображено две пары вертикальных углов: $\angle AOB$ и $\angle COD$, а также $\angle AOD$ и $\angle BOC$.

Теорема 2: Вертикальные углы равны.

Рассмотрим развернутый угол $\angle AOC$. $\angle AOB = \angle AOC - \angle BOC = 180^{\circ}$ - β . Рассмотрим развернутый угол $\angle BOD$. $\angle COD = \angle BOD - \angle BOC = 180^{\circ}$ - β .

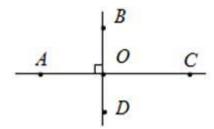

Из этих соображений мы делаем вывод, что $\angle AOB = \angle COD = \alpha$. Аналогично, $\angle AOD = \angle BOC = \beta$.

Задачи

Задача 3. Найдите угол, смежный с ∠АОС, если ∠АОС = 111°.

Решение:

Выполним чертеж к задаче:



Решение

Поскольку $\angle AOC$ = β и $\angle COD$ = α смежные углы, то α + β = 180° . То есть 111° + β = 180° . Значит, β = 69° .

Понятие «перпендикулярные прямые»

Определение: Если пересекающиеся прямые образуют угол 90° , то они называются **перпендикулярными**. На рисунке изображены перпендикулярные прямые *AC* и BD.

Обозначение перпендикулярных прямых следующее: ${f AC}\perp {f BD}$.