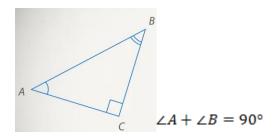
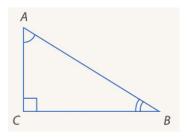

Прямоугольный треугольник и его свойства

В задачах прямой угол вовсе не обязательно – левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

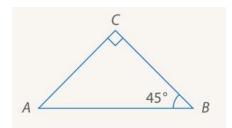

Стороны, между которыми прямой угол, называются катеты, а третья сторона (самая длинная) называется гипотенуза.


Ну вот, названия обсудили, теперь самое важное: свойства прямоугольных треугольников.

Свойство 1

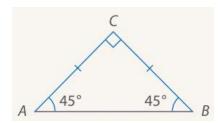
Сумма двух острых углов прямоугольного треугольника равна 90° .

Разберемся, почему речь идет именно об острых углах. Рассмотрим $^{\Delta ABC}$



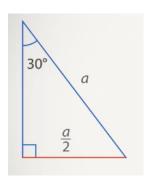
Сумма всех трех углов треугольника $\angle ACB + \angle CAB + \angle ABC = 180^\circ$. Как мы знаем, один из углов прямоугольного треугольника $\angle ACB = 90^\circ$, значит, сумма оставшихся $\angle CAB + \angle ABC = 90^\circ$. Из этого следует, что они острые: раз их сумма равна 90° , то каждый из них меньше 90° . Получили, $\angle CAB + \angle ABC = 90^\circ$, то есть свойство доказано.

Свойство 2

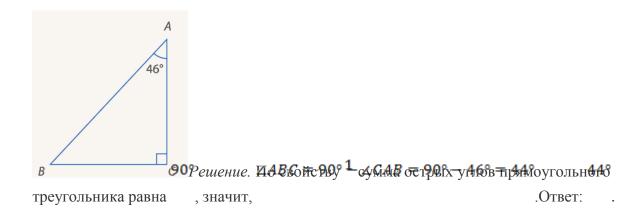

Если в прямоугольном треугольнике один из углов равен 45⁰, то такой треугольник – равнобедренный.

Доказательство. Пусть $\angle ABC = 45^{\circ}$ (см. Рис. 6).

Прямоугольный треугольник с углом $\angle ABC = 45^{\circ}$


Исходя из первого свойства, $\angle CAB = 90^{\circ} - \angle ABC = 90^{\circ} - 45^{\circ} = 45^{\circ}$. Получаем, что $\angle ABC = \angle CAB = 45^{\circ}$. Тогда треугольник равнобедренный по признаку — углы при основании равны Значит, катеты равны AC = BC.

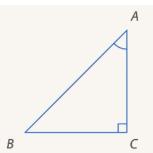
Углы при основании равны – треугольник равнобедренный


Свойство 3

Катет прямоугольного треугольника, лежащий против угла 30^{0} , равен половине гипотенузы

Примеры

1. В прямоугольном $\triangle ABC$: $\angle CAB = 46^{\circ}$ $_{\text{И}} \angle ACB = 90^{\circ}$. Найти угол $\angle ABC$

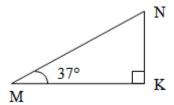

2. Один из углов прямоугольного $\triangle ABC$ ($\angle ACB = 90^{\circ}$) втрое меньше другого ($\angle 1 = 3 \cdot \angle 2$). Найти острые углы треугольника $\angle ABC$ $_{\rm U}$ $\angle CAB$

Решение. Ясно, что искомый угол – один из острых. Тогда он может быть меньше либо другого острого, либо меньше прямого, то есть нужно рассмотреть два варианта.

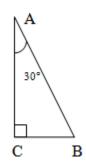
1. Один острый угол втрое меньше другого острого угла. Пусть $\angle ABC = \alpha$, тогда $\angle CAB = 3\alpha$. По свойству 1 $\angle ABC + \angle CAB = \alpha + 3\alpha = 4\alpha = 90^\circ$. Значит, $\alpha = 90^\circ$: $4 = 22,5^\circ = 22^\circ30'$, а тогда $3\alpha = 3 \cdot 22^\circ30' = 67^\circ30'$.

Ответ: 1. ^{30°} и ^{60°}; 2. ^{22°30′} и ^{67°30′}.

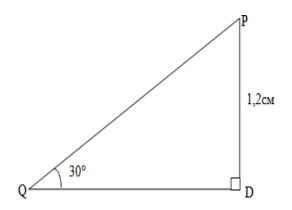
3. В прямоугольном треугольнике $\Delta ABC \angle ACB = 90^{\circ}$ катет AC = 8 см, $\angle CAB = 45^{\circ}$. Найти катет BC (см. Рис. 21).


 C Решение. По свойству 2 , если 2 2 сли 2 2 сли 2

 $_{\rm 3$ начит, ΔABC_{-} равнобедренный, у которого AC = BC = 8 см.


Ответ: ⁸ см.

ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ


1. Найти: **∠**N

2. AB=12см. Найти: ВС

3. PD = 1,2см. Найти: PQ

